Carbon Black Market Outlook Report

Published On: Feb, 2025
|
Pages: 150

The Carbon Black Market is estimated at USD 19,853 Million in 2022. Further, the market is expected to grow from USD 21,169 Million in 2023 to USD 31,787 Million in 2030 at a CAGR of 5.2%.

Carbon Black Market Market Overview

Carbon black is a fine commercial form of carbon and is a lot like graphite. It consists of organic contaminants such as PAHs (Polycyclic Aromatic Hydrocarbons), identified as human carcinogens. Carbon black can form by partial burning and pyrolysis of low-value oil residues at high temperatures under controlled process conditions. 
The fundamental properties of carbon black include particle size, structure, porosity, surface chemistry, and physical form. Carbon black is an extremely fluffy fine powder with a large surface area and one of the most stable chemical products, essentially composed of elemental carbon.

Latest Trends in the Carbon Black Market

Increasing demand for carbon black in Asia Pacific region: 
Among Asia Pacific countries, China is estimated to show a significant growth rate in the carbon black market. In the coming years, production and demand for carbon black will continue to grow. The Chinese economy maintains high-speed growth, stimulated by consecutive increases in industrial output, import & export, consumer consumption and capital investment over the past few years. In addition, the growth in the Indian packaging industry has increased the demand for carbon black in different applications. Also, the Indian government's mission to make India a 100% electric vehicle nation by 2030 under the new National Electric Mobility Mission Plan is expected to push the demand for automobiles in the coming years. This demand, in turn, would aid growth in ancillary industries such as the tire industry, which uses carbon black as its primary raw material. Moreover, the demand for industrial rubber, such as in conveyor belts and hoses, is anticipated to influence the demand for carbon black in India positively. 
In 2022, Continental Carbon announced the opening of its new manufacturing plant in Gujarat with an investment of $83 Million. This new unit has four production lines and is estimated to have an annual production capacity of nearly 1,50,000 tonnes. The latest expansion comes on the heels of rising demand for carbon black from customers across the globe.
In 2021, Phillips Carbon Black Ltd had been progressing strategically with a project to establish a 150-kiloton-per-year production plant in southern India. According to ERJ, the manufacturer expects to invest €67 million in the plant. The factory is expected to be built near Chennai, India and launched in 2023, producing various grades of rubber black and specialty carbon black.

Driving Factors

Growing demand for carbon black usage in different end-user industries:
The demand for carbon black in different applications such as rubber reinforcement, paints & coatings, plastics, engineering resins, ESD, film & molding, battery electrodes, and inks & toners is boosting the market. Carbon black has extensive application as a model compound for diesel soot oxidation experiments. It is employed as a pigment and colorant, for reinforcing filler in tires and other rubber products, and as a wear protection additive in paints, plastics, and ink pigment. Also, it can be used as a food colorant when made using vegetable matter. 
Carbon black most prevalent use is as a pigment and reinforcing phase in automobile tires to make tires stronger and tear-resistant. Carbon black is widely utilized in tire industrial/Mechanical Rubber Goods (MRG) applications. It also helps conduct heat away from the belt and tread area of the tire, which reduces thermal damage while increasing tire life. It also protects rubber tires against ultraviolet light and oxidation. Modern tires have different grades of rubber compounds and need special grades of carbon black, depending upon the performance. Innovation in tires in pursuit of new, improved low rolling resistance, with additional emphasis on tire weight reduction, is expected to fuel the usage of carbon black. Carbon black is also extensively used in the rubber industry to strengthen, increase volume, and improve the physical properties of rubber. It also helps strengthen vulcanization.

Market Challenges

Hazardous Gas Emissions produced during production:
Every year, nearly 14 million tons of carbon black is produced across the globe, most of it through incomplete combustion of fossil fuels, causing emissions of 35-40 million tons of CO2. Up to 90% of carbon black is used as a reinforcing agent in products such as tires and rubber; the remainder is used as a pigment in plastics, inks, coatings and other applications. Globally about 1-1.5 billion tires come to the end of their life – most of which is dumped, landfilled, or burned, often in parts of the world where environmental controls are poor or non-existent. This provides major environmental challenges, ranging from CO? emissions and pollution from burning these tires to providing great breeding grounds for malaria mosquitos that reside in still-standing water remaining in these tires. 
Additionally, around 4.5 million tons of carbon black captured in these end-of-life tires go to waste. The production of carbon black leads to emissions of various harmful gases, such as carbon monoxide, which is a potential threat to the environment. Traditional carbon black is produced from fossil fuels, partially burning crude oil, under controlled conditions. This conventional way of producing carbon black is very polluting. A new solution to this issue creates a different production process for carbon black using end-of-life tires as feedstock to produce consistent, high-quality carbon blacks.

Companies Mentioned

ORION ENGINEERED CARBONS SA
CABOT CORPORATION:
BIRLA CARBON
PCBL, LTD.
OCI COMPANY, LTD.
 

Market Segmentation

Market Split

     Detail

By Product Type

  • Single-circuit
  • Multi-circuit

By End User

  • HVAC-R
  • Chemical & Petrochemical
  • Power Generation
  • Food & Beverage
  • Heavy Industry
  • Others

By Application

  • Evaporator
  • Condenser
  • Economizer

By Geography

  • North America (USA, Canada, Mexico)
  • Europe (Germany, UK, France, Spain, Italy, Rest of Europe)
  • Asia-Pacific (China, India, Japan, Australia, Rest of APAC)
  • The Middle East and Africa (Middle East, Africa)
  • South and Central America (Brazil, Argentina, Rest of SCA)

TABLE OF CONTENTS

1. GLOBALCARBON BLACK INDUSTRY
1.1. Market Scope and Definition
1.2. Study Assumptions

2. CARBON BLACK MARKET LATEST TRENDS, DRIVERS AND CHALLENGES, 2021-2030
2.1. Carbon Black Market Latest Trends
2.1.1. Increasing demand for carbon black in Asia Pacific region:
2.1.2. Growing usage of Recovered/Recycled & bio-based carbon black:
2.1.3. Innovations to Expand End-Use Applications:
2.1.4. Shifting focus from commodities to more specialized grades of carbon black:
2.1.5. Increasing Trade Prices Amid Disruption to Russia's Carbon Black Supply
2.2. Carbon Black Market Insights, 2021-2030
2.2.1. Leading Carbon Black End-Use, 2021-2030
2.2.2. Leading Carbon Black Grade, 2021-2030
2.2.3. Dominant Carbon Black Product Type, 2021-2030
2.2.4. Fast-Growing Geographies for Carbon Black, 2021-2030
2.3. Carbon Black Market Drivers to 2030
2.3.1. Growing demand for carbon black usage in different end-user industries:
2.3.2. Significant rise in carbon black production and properties:
2.3.3. Strong potential of specialty carbon black:
2.3.4. Growth in Plastics & Coatings Industry & Rising investments by key players:
2.4. Carbon Black Market Restraints to 2030
2.4.1. Hazardous Gas Emissions produced during production:
2.4.2. Fluctuating Raw Material Prices:
2.4.3. Availability of Substitutes:
2.4.4. Russia-Ukraine War Impact on Carbon Black Industry:
2.5. Carbon Black Market-Five Forces Analysis

3. GLOBAL CARBON BLACK MARKET VALUE, MARKET SHARE, AND FORECAST TO 2030
3.1. Global Carbon Black Market Overview, 2021
3.2. Global Carbon Black Market Size and Share Outlook, By End-Use, 2021-2030
3.2.1. Tire
3.2.2. Non-Tire Rubber
3.2.3. Plastics
3.2.4. Inks & Coatings
3.2.5. Other End-Use
3.3. Global Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
3.3.1. Standard Grade
3.3.2. Specialty Grade
3.4. Global Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
3.4.1. Furnace Black
3.4.2. Thermal Black
3.4.3. Acetylene Black
3.4.4. Other
3.5. Global Carbon Black Market Size and Share Outlook by Region, 2021-2030

4. NORTH AMERICA CARBON BLACK MARKET VALUE, MARKET SHARE, AND FORECAST TO 2030
4.1. North America Carbon Black Market Overview, 2021
4.2. North America Carbon Black Market Size and Share Outlook by End-Use, 2021-2030
4.3. North America Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
4.4. North America Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
4.5. North America Carbon Black Market Size and Share Outlook by Country, 2021-2030
4.5.1. United States
4.5.2. Canada
4.5.3. Mexico

5. EUROPE CARBON BLACK MARKET VALUE, MARKET SHARE, AND FORECAST TO 2030
5.1. Europe Carbon Black Market Overview, 2021
5.2. Europe Carbon Black Market Size and Share Outlook by End-Use, 2021-2030
5.3. Europe Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
5.4. Europe Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
5.5. Europe Carbon Black Market Size and Share Outlook by Country, 2021-2030
5.5.1. Germany
5.5.2. UK
5.5.3. Italy
5.5.4. France
5.5.5. Spain
5.5.6. Rest of Europe

6. ASIA PACIFIC CARBON BLACK MARKET VALUE, MARKET SHARE AND FORECAST TO 2030
6.1. Asia Pacific Carbon Black Market Overview, 2021
6.2. Asia Pacific Carbon Black Market Size and Share Outlook by End-Use, 2021-2030
6.3. Asia Pacific Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
6.4. Asia Pacific Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
6.5. Asia Pacific Carbon Black Market Size and Share Outlook by Country, 2021-2030
6.5.1. China
6.5.2. Japan
6.5.3. India
6.5.4. South Korea
6.5.5. Rest of Asia Pacific

7. SOUTH AND CENTRAL AMERICA CARBON BLACK MARKET VALUE, MARKET SHARE AND FORECAST TO 2030
7.1. South and Central America Carbon Black Market Overview, 2021
7.2. South and Central America Carbon Black Market Size and Share Outlook by End-Use, 2021-2030
7.3. South and Central America Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
7.4. South and Central America Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
7.5. South and Central America Carbon Black Market Size and Share Outlook by Country, 2021-2030
7.5.1. Brazil
7.5.2. Argentina
7.5.3. Rest of South and Central America

8. MIDDLE EAST AFRICA CARBON BLACK MARKET VALUE, MARKET SHARE AND FORECAST TO 2030
8.1. Middle East Africa Carbon Black Market Overview, 2021
8.2. Middle East Africa Carbon Black Market Size and Share Outlook by End-Use, 2021-2030
8.3. Middle East Africa Carbon Black Market Size and Share Outlook, By Grade, 2021-2030
8.4. Middle East Africa Carbon Black Market Size and Share Outlook, By Product Type, 2021-2030
8.5. Middle East Africa Carbon Black Market Size and Share Outlook by Country, 2021-2030
8.5.1. Middle East
8.5.2. Africa

9. CARBON BLACK MARKET STRUCTURE
9.1. ORION ENGINEERED CARBONS SA
9.2. CABOT CORPORATION:
9.3. BIRLA CARBON
9.4. PCBL, LTD.
9.5. OCI COMPANY, LTD.

10. APPENDIX
10.1. Carbon Black Trade Data
10.1.1. Carbon Black Imports, 2019-2022
10.1.2. Carbon Black Exports, 2019-2022
10.2. About Us
10.3. Sources
10.4. Research Methodology
10.5. Contact Information

  

  

Get Free Sample

At OG Analysis, we understand the importance of informed decision-making in today's dynamic business landscape. To help you experience the depth and quality of our market research reports, we offer complimentary samples tailored to your specific needs.

Start Now! Please fill the form below for your free sample.

Why Request a Free Sample?

Evaluate Our Expertise: Our reports are crafted by industry experts and seasoned analysts. Requesting a sample allows you to assess the depth of research and the caliber of insights we provide.

Tailored to Your Needs: Let us know your industry, market segment, or specific topic of interest. Our free samples are customized to ensure relevance to your business objectives.

Witness Actionable Insights: See firsthand how our reports go beyond data, offering actionable insights and strategic recommendations that can drive your business forward.

Embark on your journey towards strategic decision-making by requesting a free sample from OG Analysis. Experience the caliber of insights that can transform the way you approach your business challenges.

You can purchase individual sections of this report. Explore pricing options for specific sections.
License

$4150- 5%

$6450- 10%

$8450- 15%

Didn’t find what you’re looking for? TALK TO OUR ANALYST TEAM

Need something within your budget? NO WORRIES! WE GOT YOU COVERED!

Related Products

Ground Calcium Carbonate Market Outlook Report

Ground Calcium Carbonate Market Overview Ground calcium carbonate commonly referred to as GCC is finely ground limestone or marble, a calcium carbonate material having the chemical formula, CaCO3. GCC accounts for more than 80% of the Calcium carbonate market that is available in Ground Calcium Carbonate (GCC) and Precipitated Calcium Carbonate (PCC) forms. GCC is produced by mechanical grinding of the raw material, limestone, and then classified to the desired size without involving any chemical change in the process. In a magnified view, the distribution of particle sizes in a GCC is much broader than for a PCC of the same size, implying that there are many more large particles and many more small particles than in a PCC. The size of the largest of the particles (the ""top size"") is much greater for a GCC than for a PCC, thus making GCC a less refined version of Calcium carbonate. GCC is widely used as an industrial mineral is differentiated by three primary attributes - particle size, color and chemical purity. The mineral finds application in various industries based on its quality and suitability of use. Latest Trends in Ground Calcium Carbonate Market Growing Usage of Calcium Carbonate as Industrial Filler: Industrial filler has been the top and continuously growing application for calcium carbonate. Finely ground calcium carbonate is used as a filler in plastics, paints, and paper to improve aesthetics, and functionality and to save on filling costs. Calcium carbonate consumption as the filler has the potential to exceed calcium carbonate used as a dimension stone, in a few key markets. The most abundant sources of carbonate mineral fillers are the reserves of white marble. The most important attributes of carbonate fillers that decide their usefulness in industrial applications are particle size, brightness (whiteness), and chemical purity. Fillers were earlier used to substitute costlier materials in paint or polymers in rubbers or plastics. Currently, they are being used to add stiffness, color, opacity, or other required qualities to a product. Innovative technologies allowing the usage of GCC in new applications without altering the originality and functionality are aiding further penetration of GCC. Driving Factors Increase in Demand from the Construction and Infrastructure Sector: Robust development in construction and infrastructure activities across the world is generating demand for paints, coatings, adhesives, ceramics and various other polymers and concretes. These end-users are further deriving demand for ground calcium carbonate materials. Increasing Population, growing urbanization and fast-developing economies, especially in Asia and the Middle East, have led to growth in the need for infrastructure. Huge developments in infra projects and high-rise apartments necessitate lightweight and cost-effective options. Ground Calcium Carbonate is evolving robustly to match those requirements precisely. Market Challenges Environmental hazards of limestone mining: Limestone mining can disturb groundwater conditions. Limestone deposits frequently arise in association with karst, a landscape where limestone gradually dissolves underground. The deposits result in caves, sinkholes, and areas of rock ruptures that create underground drainage areas. Mining in karst can disturb natural aquifers and alter the flow of the underground water. Excavating operations often remove ground water to expose the mining site; this can decrease the level of the water table and alter water flows through rock formations. Streams and rivers can be changed when mines pump excess water from a limestone quarry into natural downstream channels. This increases the danger of flooding and any pollutants or alterations in water quality disturb the surface water. Companies Mentioned J.M. Huber Corporation Mississippi Lime Company Imerys Omya AG Minerals Technologies Inc. Mississippi Lime Company Carmeuse Shiraishi Kogyo Kaisha, Ltd. Maruo Calcium Co. Ltd. Okutama Kogyo Co., Ltd. Newpark Resources, Inc. *The companies above are listed in no particular order. Report Scope Details Market Value- $ Million,2024 22,357 Market Growth (Value), (2024-2031)- % 5.83 Leading Region Xx Base Year 2023 Forecast Period 2024 to 2031 Segments Covered By Form, By End Use Geography Covered North America, Europe, Asia-Pacific, South and Central America, and Middle East & Africa

Published:Feb-2025

Propyl Gallate Market Outlook Report

Propyl Gallate Market Overview Propyl gallate (n-propyl 3,4,5-trihydroxybenzoate, PG) is an ester formed by propanol and gallic acid condensation. It is an important synthetic substance widely used in cosmetics, foods, pharmaceuticals, and other fields. Also, it is used as an effective antioxidant in cosmetics to stabilize vitamins, essential oils, perfumes, fats and oils. China is still the world's largest propyl gallate production region; because of the limit of the raw material, only a few companies in the world are mainly distributed in China.The global propyl gallate market is mainly attributed to factors such as the rising use of cosmetics, rapid growth of the pharmaceutical industry & food & beverage industry, growing population, and changing lifestyles. According to the FDA, propyl gallate is safe for human consumption. The rising market of processed and convenience food in the food industry in several less developed countries globally is driving the market's growth. Latest Trends in Propyl Gallate Market Increasing Propyl Gallate Demand for Processed Food: The rising consumption of packaged food is estimated to boost the global propylgallate market during the forecast period. At present, antioxidants continue to gain momentum in the food & beverage industry and are considered an important additive. The growing demand and consumption of processed foods, which widely contain antioxidant compounds, has driven the market growth. Propyl gallate prevents oxidation and extends the shelf-life of the food. The rising working population and the fast-paced lifestyle of people have led to their surging reliance on processed foods. Further, functional foods are becoming more in demand, and consumers demand high-protein, nutritionally rich superfoods. These factors influenced manufacturers to develop innovative products and adopt new technologies. As developing economies like China and India grow and attain high disposable income, their demand for food antioxidants & additives is rising. The demand for propyl gallate food antioxidants is expected to grow modestly in early adopting countries such as Japan and Germany and exponentially in new & emerging markets such as Thailand, Malaysia, and other Asian countries. Driving Factors Increasing Propyl Gallate Demand for Processed Food: The rising consumption of packaged food is estimated to boost the global propyl gallate market during the forecast period. At present, antioxidants continue to gain momentum in the food & beverage industry and are considered an important additive. The growing demand and consumption of processed foods, which widely contain antioxidant compounds, has driven the market growth. Propyl gallate prevents oxidation and extends the shelf-life of the food. The rising working population and the fast-paced lifestyle of people have led to their surging reliance on processed foods. Further, functional foods are becoming more in demand, and consumers demand high-protein, nutritionally rich superfoods. These factors influenced manufacturers to develop innovative products and adopt new technologies. Market Challenges Availability of Bio-Based Antioxidants & Other Substitutes: The other alternatives of propyl gallate include octyl gallate, methyl gallate, dodecyl gallate, ethyl gallate, and others. Propyl gallate is an irritant to the skin and eyes and a dermal sensitizer. Exposure via inhalation is possible, and it is considered a hazard. The use of the additive in animal nutrition does not pose a risk to the environment. Propyl gallate has, until recently, been used as a major antioxidant in fatty food and, in the cosmetic industry, in the manufacture of cosmetic products. Propyl gallate has a high sensitizing potential; however, the frequency of allergic contact dermatitis from antioxidants of the gallate type was surprisingly low. Nevertheless, a concomitant reduction of propyl gallate as an antioxidant in food, with oral tolerance being less likely to develop, may also contribute to the increasing trend of allergic contact dermatitis caused by propyl gallate. Companies Mentioned Wufeng Chicheng Biotech Co., Ltd. Hunan Linong Technology Co., Ltd. Leshan Sanjiang Bio-Tech Co., Ltd. Tianxin Medical & Chemical Industry, Co., Ltd. Wenzhou Ouhai Fine Chemicals, Ltd. REXLER. Thermo Fisher Scientific Inc. Tokyo Chemical Industry Co., Ltd. (TCI) Alfa Aesar BASF SE Gallochem Co., Ltd. Haihang Industry Impextraco Kemin Industries *The companies above are listed in no particular order. Report Scope Details Market Value- $ Million,2024 53.6 Market Growth (Value), (2024-2031)- % 5.6 Leading Region Xx Base Year 2023 Forecast Period 2024 to 2031 Segments Covered By Raw Material, By Grade, By End Use Geography Covered North America, Europe, Asia-Pacific, South and Central America, and Middle East & Africa

Published:Feb-2025

Epoxy Curing Agents Market Analysis and Outlook Report: Industry Size, Share, Growth Trends, and Forecast (2025-2032)

The Epoxy Curing Agents Market has witnessed significant growth in recent years, driven by the rising demand for high-performance coatings, adhesives, and composites across industries such as construction, automotive, aerospace, and electronics. Epoxy curing agents play a crucial role in enhancing the mechanical, thermal, and chemical resistance properties of epoxy resins, making them indispensable in industrial applications. The growing emphasis on sustainability has also led to the development of eco- friendly and low-volatile organic compound (VOC) curing agents, which are increasingly being adopted in various sectors. With expanding infrastructure projects, rapid industrialization, and technological advancements, the market is poised for steady growth in the coming years. Additionally, the rise of electric vehicles (EVs) and renewable energy installations is expected to further boost the demand for advanced epoxy-based materials. Market Developments in 2024 In 2024, the epoxy curing agents market experienced robust growth, supported by increasing construction activities and infrastructure development worldwide. Governments and private investors ramped up spending on smart cities, green buildings, and energy-efficient structures, all of which require durable and high-strength epoxy-based materials. The electronics industry also played a crucial role, with the surge in demand for consumer electronics, circuit boards, and semiconductor packaging. Additionally, stringent environmental regulations led to increased investments in bio-based and waterborne epoxy curing agents, driving innovation among manufacturers. Key players in the industry focused on strategic collaborations and product launches to expand their market footprint, catering to the growing demand for sustainable and high-performance epoxy formulations. Expected Development in 2025 Looking ahead to 2025 and beyond, the epoxy curing agents market is expected to witness further advancements in technology, with a strong focus on sustainability and energy efficiency. The developmentof bio-based curing agents derived from renewable sources will gain momentum, catering to the increasing demand for environmentally friendly solutions. Additionally, the rise of Industry 4.0 and the adoption of smart manufacturing processes will enhance production efficiency and customization in epoxy formulations. The expanding EV sector, particularly in Asia-Pacific and Europe, will continue to drive the need for lightweight and high-strength epoxy composites. Furthermore, as offshore wind farms and solar power projects expand, demand for corrosion-resistant and weatherproof epoxy coatings will surge. While economic uncertainties and fluctuating raw material costs may pose challenges, continuous R&D efforts and strategic investments will support the long-term growth of the market. Notable Trends and Drivers: • Sustainability and Bio-based Solutions – With increasing environmental concerns, manufacturers are investing in bio-based and low-VOC epoxy curing agents, aligning with global regulatory requirements and sustainability goals. • Advanced Composites in EVs and Aerospace – The growing adoption of epoxy-based lightweight composites in electric vehicles and aerospace applications is driving innovation in high- performance curing agents. • Rising Construction and Infrastructure Development – The expansion of smart cities, energy- efficient buildings, and large-scale infrastructure projects worldwide is fueling demand for durable and high-strength epoxy formulations. • Growth in Electronics and Semiconductor Industry – The increasing use of epoxy curing agents in circuit boards, semiconductor packaging, and electronic components is accelerating market growth.

Published:Apr-2025